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Abstract. Using a q-analog of Boltzmann’s combinatorial basis of entropy, the non-asymptotic non-
degenerate and degenerate combinatorial forms of the Tsallis entropy function are derived. The new
measures – supersets of the Tsallis entropy and the non-asymptotic variant of the Shannon entropy –
are functions of the probability and degeneracy of each state, the Tsallis parameter q and the number of
entities N . The analysis extends the Tsallis entropy concept to systems of small numbers of entities, with
implications for the permissible range of q and the role of degeneracy.

PACS. 02.30.-f Function theory, analysis – 02.50.Cw Probability theory – 05.20.-y Classical statistical
mechanics – 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical sys-
tems

1 Introduction

The combinatorial basis of entropy, given over a century
ago by Boltzmann [1] and Planck [2], can be written
as [3–6]:

H(N) =
1
N

ln W (1)

where H(N) is the dimensionless entropy of a system, ex-
pressed per unit entity, N is the number of entities and
W is the number of configurations (microstates) corre-
sponding to a specified realization (macrostate) of the sys-
tem, termed its statistical weight. The maximum entropy
position (“MaxEnt”) defined by (1), subject to the con-
straints on the system, therefore corresponds to the real-
ization of maximum weight (hence maximum probability,
“MaxProb”), providing a purely probabilistic justification
of the entropy concept [1–6]. This perspective is similar to
(and subsumes) the “inferential” school of Jaynes [7,8], in
which the dimensionless entropy is adopted as a universal
tool for statistical inference (“inductive reasoning”), from
which the thermodynamic entropy emerges as a special
case. However, the combinatorial definition (1) does not
depend on information theory. If a system is of multino-
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mial weight:

W1 =
N !

s∏

i=1

ni!
with N =

s∑

i=1

ni (2)

where ni is the number of entities in each distinguish-
able level i, from s such levels, it can be shown us-
ing Stirling’s approximation ln(m!) ≈ m lnm − m (or
Sanov’s theorem [9]) that H(N) converges asymptotically
forN → ∞, ni → ∞, ∀i to the Boltzmann-Gibbs-Shannon
(“BGS”) entropy function [10–12]:

H
(∞)
1 = lim

N→∞
1
N

ln W1 = −
s∑

i=1

pi ln pi (3)

where pi = ni/N is the probability of an entity being in
the ith level. It must, however, be recognized that a sys-
tem might not be of multinomial structure. This insight
led to the development of other entropy functions, e.g. for
Bose-Einstein and Fermi-Dirac statistics, with profound
implications for quantum physics [13], and has been ex-
plored in the context of other combinatorial structures [14]
and non-extensive statistical mechanics [15].

A more recent development in statistical physics
has been the proposition of various alternative entropy
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functions, for example the Tsallis entropy [16]:

H(∞)
q = −

s∑

i=1

pq
i lnq pi =

1
q − 1

(

1 −
s∑

i=1

pq
i

)

= −
s∑

i=1

pi ln2−q pi (4)

where q ∈ R is the Tsallis parameter, and lnq x = (1 −
q)−1(x1−q − 1), x > 0 is the q-logarithmic function [17].
In the limit q → 1, lnq x → lnx and H(∞)

q reduces to the
BGS entropy function (3). The Tsallis entropy has proven
useful for the analysis of systems involving long-range in-
teractions, including a diverse range of physical, chem-
ical, astronomical, turbulent, engineering and economic
systems (e.g. [18–22]), but to this day remains a topic of
some controversy (e.g. [15,23–25]).

To more fully comprehend the physical meaning of the
Tsallis entropy, it is important to consider its combina-
torial basis. In fact, a combinatorial formulation of the
Tsallis entropy – analogous to the Boltzmann principle
– has recently been presented, based on a q-logarithmic
transformation of a q-multinomial weight, subject to the
q-Stirling approximation [26] (these q-algebraic terms are
defined in Sect. 2). Embedded within the derivation is the
well-known q ⇔ (2−q) mapping of Tsallis statistics. Sepa-
rately, the “exact” or “non-asymptotic” forms of the non-
degenerate and degenerate BGS entropy functions – valid
for finite N and/or {ni} – have also recently been derived,
by direct application of Boltzmann’s principle without the
Stirling approximation [6,27,28]. The latter enables the de-
velopment of a theory of “non-asymptotic statistical me-
chanics” (via the method of Jaynes [7,8]) for multinomial
systems containing small numbers of entities [27,28]. Par-
allel analyses, applied to Bose-Einstein and Fermi-Dirac
systems, suggest that the “collapse of the wavefunction” in
quantum mechanics is a consequence of the (information-
theoretic) second law of thermodynamics [27,28].

The aim of this work is to unite the above develop-
ments, by examining the non-asymptotic combinatorial
forms of the Tsallis entropy function, without and with
degenerate levels, as functions of q, Nand {ni}. A Venn
diagram for this idea is shown in Figure 1. The derivation
makes use of the q-Boltzmann principle [26] and some ad-
ditional q-algebra, without the q-Stirling approximation.
The entropy functions and their corresponding maximum
entropy (most probable) distributions are examined. Note
that the following analysis is generic, and does not im-
ply any specific connection to thermodynamics, or to any
thermodynamic ensemble, except where stated in the text.
The approach taken here offers a different perspective to
the existing combinatorial analysis of Tsallis statistics,
based on the coupling between subsystems of a canoni-
cal ensemble (e.g. [29–33]). The analysis has implications
for the permissible range of q and role of degeneracy in
Tsallis statistics.
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Fig. 1. Venn diagram of the relationships between BGS,
Tsallis and non-asymptotic statistical mechanics.

2 Mathematical background

The analysis uses several known and some new
q-mathematical functions, as listed below [17,26,34–38].
Unless stated, q, x, y ∈ R; a,N, ni ∈ N; N0 := N∪{0}; and
many functions contain the cutoff condition1 [x]1/(1−q)

+ =
x1/(1−q)η0(x), where η0(x) is a modified Heaviside func-
tion in which η0(0) = 0; hence [x]1/(1−q)

+ = x1/(1−q) if
x > 0 and [x]1/(1−q)

+ = 0 if x � 0. All functions relate to
Tsallis statistics [35–38], and differ from similar terminol-
ogy used in the mathematics of quantum groups (e.g. [39]).

• q-exponential function [17,35,36]:

expq(x) := [1 + (1 − q)x]
1

1−q

+ (5)

• q-logarithm function [17,35,36]:

lnq x :=
x1−q − 1

1 − q
, if x > 0 (6)

• q-product [37,38]:

x⊗q y := [x1−q + y1−q − 1]
1

1−q

+ , if x > 0, y > 0
(7)

• q-ratio [37,38]:

x	q y := [x1−q − y1−q + 1]
1

1−q

+ , if x > 0, y > 0
(8)

• q-power [38]:

x∧qa = x⊗
a
q = x⊗q x⊗q ......⊗q x

︸ ︷︷ ︸
a times

= [ax1−q − (a− 1)]
1

1−q

+ , if x > 0 (9)

where the last form in (9) can be extended to a ∈ R.
1 The notation [x]+ has been used incorrectly in Tsallis

mathematics, since if x � 0, the resulting zero should not be
raised to the power 1/(1 − q).
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• q-factorial [26]:

a!q : = 1 ⊗q · · · ⊗q a

=

⎡

⎣

⎛

⎝
a∑

j=1

j1−q

⎞

⎠− (a− 1)

⎤

⎦

1
1−q

+

, if a > 0

(10)

• q-Stirling approximation (“rough” form) [26]:

lim
a→∞ lnq (a!q) =

{
a

2−q (lnq a− 1) , if q > 0 and q 
= 2
a− ln a, if q = 2.

(11)
For q = 1, the traditional Stirling approximation (see
Sect. 1) is recovered.

• q-multinomial coefficient [26] – for a system with N =∑s
i=1 ni:

Wq =
[

N
n1 · · · ns

]

q

= (N !q) 	q [(n1!q) ⊗q · · · ⊗q (ns!q)]

=

[

(N !q)1−q + s−
(

s∑

i=1

(ni!q)1−q

)] 1
1−q

+

,

if N > 0, ni > 0, ∀i (12)

whence lim
q→1

Wq = W1 (see (2)). From (6) and (12):

lnq(Wq) = lnq (N !q) −
∑s

i=1
lnq (ni!q)

=
1

1 − q

{

(N !q)
1−q−

[
s∑

i=1

(ni!q)
1−q

]

+s−1

}

(13)

• q-gamma function [34]:
The q-gamma function Γq(x), the q-analog of the
gamma function Γ (x), can be expressed via its
q-logarithm as:

lnq Γq(x) :=
−ζ(q − 1, x)+ζ(q − 1)−x+ 1

1 − q
,

{
x ∈ R

q ∈ R

(14)
where ζ(m,x) and ζ(m) = ζ(m, 1) are the Hurwitz and
Riemann zeta functions, respectively. Equation (14)
has been proven for q ∈ R, q > 2, based on an ax-
iomatic definition, and is conjectured for 0 < q < 2
(the conjecture depends on the analytic continuation
of the zeta functions) [34].

• (q, q)-polygamma functions [34]:
The (q, q)-digamma and (q, q) polygamma functions
can be defined as, respectively:

Ψq,q(x) = Ψ (0)
q,q (x) :=

d

dx
lnq Γq(x)

{
q ∈ R

x ∈ R, x > 0
(15)

Ψ (m)
q,q (x) :=

dm+1

dxm+1
lnqΓq(x)=

d

dx
Ψ (m−1)

q,q (x),

⎧
⎨

⎩

q∈R

x∈R, x>0
m∈N.

(16)

From (14), these give:

Ψq,q(x) = Ψ (0)
q,q (x) = −ζ(q, x)− 1

1 − q
,

{
q ∈ R

x ∈ R, x > 0
(17)

Ψ (m)
q,q (x)=

(−1)m+1Γ (q+m)ζ(q+m,x)
Γ (q)

,

⎧
⎨

⎩

q∈R

x∈R, x>0
m∈N, q+m 
=1

(18)
again proven for q > 2 and conjectured for 0 < q <
2. Note the (q, q)-digamma function differs from the
q-digamma function of Yamano [36], in our notation
the (q, 1)-digamma function.

3 Analysis

3.1 Combinatorial basis of entropy

The starting point for the analysis is a generalized
form [5,6] of Boltzmann’s principle (1):

Hgen = κ(φ(Wgen) + C) (19)

for which:
extr Hgen = sup Wgen (20)

where Hgen is a generalized entropy; Wgen is the statisti-
cal weight of any specified realization of a system, of any
combinatorial form; φ(·) is a convenient monotonic trans-
formation function (a generalized or deformed logarithm
cf. [40–44]); κ is a scaling parameter; C is an arbitrary
constant (reference datum); extr(·) is the extremum and
sup(·) the supremum. Equation (20) places a restriction on
the choice of κ and φ, such that the extremum of Hgen re-
covers the position of maximum Wgen, in accordance with
the MaxProb principle. Putting φ(·) = ln(·), κ = N−1 and
C = 0, it can be seen that (19) reduces to the usual Boltz-
mann principle (1), and thence for a multinomial system,
asymptotically to the BGS entropy (3). In general, ex-
tremization of Hgen, subject to the natural constraint:

s∑

i=1

pi = 1 (21)

and possibly other constraints, gives the most probable
realization of the system.

The purpose of the logarithm in (1) — and of the func-
tion φ(·) in (19) — is to transform the weight into a form
which is more easily extremized. If the weight consists of
“deformed products” and/or “deformed ratios” of various
terms, a convenient choice for φ(·) is the corresponding
deformed logarithm, which can transform this weight into
linear sums and/or differences (other desirable properties
of deformed logarithms are discussed in [40–44]). For a
system of q-multinomial (Tsallis) structure, it is evident
that the deformed logarithm lnq(·) – or a variant thereof
– is an appropriate choice for φ(·). The factor κ = N−1

in (1) gives an entropy expressed per unit entity; however,
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for a q-multinomial system, some other scaling relation-
ship might be expected. Considering (4), (6), (11), (13)
and the above arguments, a combinatorial formula for the
Tsallis entropy has been found to be [26]:

H(N)
q =

q

N q
ln2−q(W2−q) for q 
= 0 (22)

whence lim
N→∞

H
(N)
q = H

(∞)
q . This provides a q-analog

of the Boltzmann principle. Note the mathematical
q ⇔ (2 − q) mapping between the weight and the entropy
(cf. [26]), and also the scaling factor κ = q/N q. For q = 0,
there is no obvious relation between the entropyH0 = s−1
and the reduced weight ln2(W2) = − lnN +

∑s
i=1 lnni,

suggesting that the Tsallis entropy has no meaning (or a
different combinatorial basis) at this point.

3.2 Non-asymptotic combinatorial forms

We now consider the “exact” or “non-asymptotic” com-
binatorial forms of the above entropy functions, which do
not depend on their relevant “deformed Stirling approxi-
mation”. From the Boltzmann principle (1) and multino-
mial weight (2), the non-asymptotic BGS entropy function
is [27,28]:

H(N) =
1
N

ln W =
s∑

i=1

{

− 1
N

ln[(piN)!] +
1
N
pi ln[N !]

}

(23)
where, for correct normalization, the N ! term is brought
inside the summation using the natural constraint (21).
Maximization of H(N) subject to (21) and possibly some
moment constraints:

s∑

i=1

pifri = 〈fr〉 , r = 1, ..., R (24)

where fri is the value of an observable fr in the ith state
and 〈fr〉 is its mathematical expectation, yields the non-
asymptotic, most probable BGS distribution [27,28], here
denoted p#

i :

p#
i =

1
N

[

Ψ−1

(
ln[N !]
N

− λ0 −
R∑

r=1

λrfri

)

− 1

]

, (25)

where ψ(x) = y is the digamma function and ψ−1(y) is its
inverse, in the latter case invoking the uppermost (posi-
tive) branch. Note there is no explicit partition function
in (25). In the Stirling limits N → ∞ and {ni → ∞}, ∀i,
(25) recovers its asymptotic form, denoted p∗i :

p∗i = exp

(

−κ0 −
R∑

r=1

λrfri

)

=
1
Z

exp

(

−
R∑

r=1

λrfri

)

,

i = 1, ..., s, (26)

where κ0 = λ0 + 1 is a shifted first multiplier and Z =
eκ0 =

∑s
i=1 exp

(
−∑R

r=1 λrfri

)
is the generalized parti-

tion function.

Similarly, from the q-Boltzmann principle (22) and
q-multinomial weight (12), the non-asymptotic combina-
torial form of the Tsallis entropy is obtained as:

H(N)
q =

q

N q
ln2−q(W2−q) =

s∑

i=1

{
− q

N q
ln2−q[(piN)!2−q]

+
q

N q
pi ln2−q[N !2−q]

}
, for q 
= 0 (27)

where the leading ln2−q(N !2−q) term is also brought in-
side the summation using (21). Equation (27) can be ex-
tremized subject to (21) and any number of moment con-
straints, e.g. of the three different types proposed in Tsallis
statistics:
Mark I: Non-power law form, given by (24) [16];
Mark II: Power law form [45]:

s∑

i=1

pq
i fri = 〈fr〉q , r = 1, ..., R; (28)

Mark III: Escort form [46–49]:

s∑

i=1

pq
i fri

s∑

i=1

pq
i

= 〈〈fr〉〉q , r = 1, ..., R, (29)

where 〈fr〉q and 〈〈fr〉〉q are, respectively, the unescorted
and escorted q-expectations of fr. These give the non-
asymptotic, most probable distribution for each case:

Mark I: p
(I)#
i =

1
N

{

ψ−1
2−q,2−q

[
1
N

ln2−q (N !2−q)

−N
q−1

q
λ

(I)
0 − N q−1

q

R∑

r=1

λ(I)
r fri

]

− 1

}

; (30)

Mark II: p
(II )#
i =

1
N

{

ψ−1
2−q,2−q

[
1
N

ln2−q (N !2−q)

−N
q−1

q
λ

(II )
0 −

(
Np

(II )#
i

)q−1 R∑

r=1

λ(II )
r fri

]

− 1

}

; (31)

Mark III:

p
(III )#
i =

1
N

⎧
⎪⎪⎨

⎪⎪⎩
ψ−1

2−q,2−q

⎡

⎢
⎢
⎣

1
N

ln2−q (N !2−q) − N q−1

q
λ

(III )
0

−

(
Np

(III )#
i

)q−1 R∑

r=1
λ

(III )
r

(
fri − 〈〈fr〉〉q

)

s∑

i=1

(
p
(III )#
i

)q

⎤

⎥
⎥
⎦− 1

⎫
⎪⎪⎬

⎪⎪⎭

(32)

where λ(j)
r , r = 0, ..., R are Lagrangian multipliers (differ-

ent in each case), and ψ−1
q,q (·) is the inverse (q, q)-digamma



R. Niven and H. Suyari: Combinatorial basis and non-asymptotic form of the Tsallis entropy function 79

function (see (15), (17)), invoking its uppermost branch.
None of the above distributions have an explicit parti-
tion function; also, the Mark II and III forms are self-
referential. In each case, the above distributions reduce
to their recognized forms (e.g. [16,45–49]) (absorbing con-
stant terms into each Lagrangian multiplier λ(j)

0 ) when
subject to the q-Stirling approximation (11).

As has been noted [27,28], although (25) and (30)–
(32) give the most probable distribution of their corre-
sponding system, the variance around this position will
be much greater than in the asymptotic case. For very
low N and/or ni (e.g. a few throws of a standard or
q-weighted die), it is quite possible that any distribution
– not simply the most probable one – will occur. Further-
more, the observed most probable distribution may differ
from the predicted distribution (25) or (30)–(32), since
the latter may not be realizable due to the effect of quan-
tization [6,27,28], and/or due to the cutoff condition in
Tsallis statistics (12). The first two effects are character-
istic features of non-asymptotic statistical inference, and
indeed of any analysis based on combinatorial arguments
(see further discussions in [6,27,28]).

3.3 Plots

To examine the effect of N , several plots of the partial en-
tropy H(N)

q,i – defined by the summand of (27) – against pi

are shown in Figure 2, for different values of N and q. In
each plot, the discrete values (calculated using q-factorials
(10) in (27), quantized with respect to ni) are shown
as points, and their interpolations (calculated using the
q-gamma function (14) in (27)) as continuous lines. The
calculations were conducted using Maple 9.51, which im-
plements the analytic continuation of the Hurwitz and
Riemann zeta functions [50]. Several conclusions can be
drawn from these plots:

• For 0 < q < 2, the partial entropies H(N)
q,i are lower

than the q-Stirling case Hq,i, with the dependency on N
becoming more spread out as q → 0. From an information-
theoretic perspective, this makes sense, since knowledge of
N should produce a situation of greater information – and
hence lower entropy – than the “default” assumption of
infinite N . Accordingly, the non-asymptotic form of the
Tsallis entropy H(N)

q is acceptable for 0 < q < 2.
• For q = 2, the partial entropies H(N)

q,i coincide with
the q-Stirling case Hq,i, and so there is no dependency on
N at this value of q.

• For q > 2, the partial entropiesH(N)
q,i are higher than

the q-Stirling case Hq,i. This suggests that knowledge of
N imparts less information to an observer, which does not
make sense from an information-theoretic perspective.

Accordingly, the combinatorial formulation used here
appears to suggest that the Tsallis entropy should be re-
stricted to the range 0 < q � 2, with specific limits at
q = 1 and q = 2. This result is broadly consistent with
similar findings by other authors [18,20,51], using quite
different arguments.

4 Degenerate forms

The foregoing analysis may be extended to degenerate sys-
tems, in which each distinguishable level i contains gi � 1
distinguishable degenerate sublevels. The sublevels, rather
than the levels, are assumed equiprobable. For the multi-
nomial (BGS) case, the weight is:

Wg = N !
s∏

i=1

gni

i

ni!
(33)

where g = {gi}. From the Boltzmann principle (1), the
non-asymptotic degenerate BGS entropy function is there-
fore [27,28]:

H(N)
g =

s∑

i=1

{

− 1
N

ln[(piN)!] +
1
N
pi ln[N !] + pi ln gi

}

(34)
which gives, in the asymptotic limit:

H(∞)
g = lim

N→∞
H(N)

g = −
s∑

i=1

pi ln
pi

gi
. (35)

Similarly, it is possible to define a degenerate
q-multinomial coefficient:

Wq,g = (N !q) 	q [(n1!q) ⊗q · · · ⊗q (ns!q)]

⊗q

[(
g1

∧
qn1

)⊗q · · · ⊗q

(
gs

∧
qns

)]

=

[

(N !q)1−q −
(

s∑

i=1

(ni!q)1−q

)

+

(
s∑

i=1

nig
1−q
i

)

+ s−N

] 1
1−q

+

, if N > 0, ni > 0, ∀i (36)

which satisfies lim
q→1

W
=
q,gWg, and from which, using

lnq(x ∧q a) = a lnq x:

lnq(Wq,g) = lnq (N !q)−
∑s

i=1
lnq (ni!q)+

∑s

i=1
ni lnq (gi)

=
1

1 − q

{

(N !q)
1−q −

[
s∑

i=1

(ni!q)
1−q

]

+

[
s∑

i=1

nig
1−q
i

]

+ s−N − 1

}

. (37)

From (22) and (37), the non-asymptotic, degenerate com-
binatorial form of the Tsallis entropy function is:

H(N)
q,g ==

s∑

i=1

{
− q

N q
ln2−q[(piN)!2−q]+

q

N q
pi ln2−q[N !2−q]

+
q

N q−1
pi ln2−q gi

}
, for q 
= 0. (38)

In the limit q → 1, this reduces to the non-asymptotic
degenerate BGS entropy (34). Alternatively, applying the
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Fig. 2. Plots of the partial non-asymptotic, non-degenerate Tsallis entropy H
(N)
q.i against pi , for various values of N and q

(points from (10) and (27), and curves from (14) and (27)).
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q-Stirling approximation (11) and the relation lnq(piN) =
N1−q lnq pi + lnq N , (38) reduces to:

H(∞)
q,g = Hq,g

= lim
N→∞

s∑

i=1

{
−pi ln2−q pi +

q

N q−1
pi ln2−q gi

}
, for q 
= 0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hq, for q > 1
Hg, for q = 1
Hq + ∞, for 0 < q < 1
undefined for q = 0
Hq −∞, for q < 0.

(39)

This curious (and unexpected) result indicates that in the
limit N → ∞ and q > 1, the degenerate Tsallis entropy re-
duces to the usual (non-degenerate) Tsallis entropy. This
result is in stark contrast to that at N → ∞ and q = 1
(the degenerate BGS form (35)), in which the degeneracy
is of fundamental importance. For N → ∞ and 0 < q < 1
(or q < 0), the degenerate Tsallis entropy is equal to the
Tsallis entropy plus (minus) an infinite term. Provided
this infinite term can be discarded, then for N → ∞ and
q < 1 (with q 
= 0) the degeneracy again has no effect.
The general conclusion is that the Tsallis entropy, for a
q-multinomial system in the asymptotic limit, has no de-
generate counterpart, except for the (BGS) limiting case
at q = 1.

The maximum-entropy probability distributions and
other variants for the non-asymptotic degenerate Tsallis
statistic can again be obtained by extremization of (38),
subject to the relevant constraint set (21) and (24), (28)
or (29).

5 Conclusions

In this work the non-asymptotic combinatorial form of
the Tsallis entropy function, , is derived using a q-analog
of the combinatorial method of Boltzmann, without the
q-Stirling approximation. The new function is a superset
of both the Tsallis entropy and the non-asymptotic form
of the BGS entropy, containing an additional dependency
on N . By information-theoretic reasoning, this formula-
tion provides grounds to suggest that Tsallis statistical
mechanics should be restricted to 0 < q � 2, with specific
limits at q = 1, 2. It is also shown that the Tsallis entropy
has no degenerate counterpart, except in the specific in-
stances of q = 1 or finite N .
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